CS算法优化BP神经网络的短时交通流量预测  被引量:29

Short time traffic flow prediction model based on neural network and cuckoo search algorithm

在线阅读下载全文

作  者:高述涛[1] 

机构地区:[1]湖南外贸职业学院服务外包学院,长沙410014

出  处:《计算机工程与应用》2013年第9期106-109,共4页Computer Engineering and Applications

摘  要:为了提高短时交通流量的预测精度,提出一种布谷鸟搜索算法优化BP神经网络参数的短时交通流量预测模型(CS-BPNN)。基于混沌理论对短时交通流量时间序列进行相空间重构,将重构后的时间序列输入到BP神经网络进行学习,采用布谷鸟搜索算法找到BP神经网络最优参数,建立短时交通流量预测模型,通过具体实例对CS-BPNN性能进行测试。仿真结果表明,相对于对比模型,CS-BPNN提高了短时交通流量的预测精度,更加准确反映了短时交通流量的变化趋势。In order to improve the prediction accuracy of short time traffic flow,this paper proposes a network tra/tic prediction model based on Cuckoo Search algorithm and BP Neural Network(CS-BPNN).The time series of short time traffic flow is reconstructed to form a multidimensional time series based on chaotic theory, and then the time series are input into BP neural network to learn which parameters of BP neural network are optimized by cuckoo search algorithm to find the optimal parameters and establish the short time traffic flow prediction model.The performance of CS-BPNN is tested by the simulation experiments. The simulation results show that the proposed model improves the prediction accuracy of short time traffic flow and can more describe network traffic complex trend compared with reference models.

关 键 词:短时交通流量 相空间重构 布谷鸟搜索算法 高斯扰动 反向传播(BP)神经网络 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象