检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南科技大学环境与资源学院,四川绵阳621010
出 处:《四川理工学院学报(自然科学版)》2013年第2期53-56,共4页Journal of Sichuan University of Science & Engineering(Natural Science Edition)
摘 要:在对基坑的监测数据进行预测和分析中,现有的一部分方法很难满足实际施工中高度非线性问题的拟合,如指数法预测的沉降量往往偏小,双曲线法预测的沉降量往往偏大,而GM(1,1)对观测值的累加往往又不具有指数规律。考虑到这些局限,引用BP神经网络,以苏州地铁2号线某工程为例,结合历史的沉降监测值,对其基坑周边地表短期沉降进行预测。实践表明,该方法预测误差较小,为基坑周边地表沉降的预测提供了一种较好的途径,在基坑动态设计与信息化施工方面具有重要的参考价值。To make the engineering project safe and implement the information construction, it is important to ana- lyze and predict the monitoring data during pit excavation. Part of the current method is hard to meet the practical con- struction of highly nonlinear problem of fitting, such as by index method of settlement the prediction is often small, by hyperbolic method of settlement the prediction is often partial, and GM ( 1 , 1 ) on the observation value of the accumu- lator often does not have index law. Based on these considerations, the project which belongs to Suzhou metro line 2 projects is taken as an example. Using BP neural network knowledge, combined with the history of the settlement moni- toring value, the surface subsidence around the foundation pit is short-term predicted. Application results show that its prediction error is small. The propased method presented here is an important reference to the dynamic design and informative construction for pit engineering.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.240