检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学力学与工程学院,四川成都610031
出 处:《西南交通大学学报》2013年第2期217-222,共6页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(10972185;10902103;11102170;11102172);中央高校基本科研业务费专项资金资助项目(SWJTU11CX071;2682013XC026)项目
摘 要:为了研究壁板在亚音速气流和外激扰联合作用下的非线性运动特性,基于Hamilton原理,建立了外激励作用下亚音速粘弹性壁板的非线性运动方程,并采用Galerkin方法将其离散为常微分方程组,研究了系统的平衡点及其稳定性.利用Melnikov方法得到了壁板出现混沌运动时系统参数所满足的临界条件,分析了外激励幅值、频率及气流来流速度之间的临界关系,并与系统混沌运动的数值模拟结果进行了对比.结果表明:当无量纲动压值超过64.42时,壁板系统平衡点的个数及其稳定性均会发生改变;使用Melnikov方法确定的混沌运动临界参数与数值模拟结果相符,该方法可用于判定混沌运动是否发生.In order to study the nonlinear dynamics of a panel subjected to external excitation in subsonic flow, the nonlinear governing motion equations of a two-dimensional forced subsonic viscoelastic panel were established by Hamilton theory, and discretized to a series of ordinary differential equations using the Galerkin method. Then, the system equilibrium points and their stability were analyzed, and Melnikov's method was used to obtain the critical values of system parameters for chaos appearance. The critical relations between the external excitation amplitude, frequency, and flow velocity were discussed and compared with the results of chaotic motions by numerical simulation. The results show that the number of equilibrium points and their stability will change after the dimensionless dynamic pressure exceeds 64.42, and the critical parameters determined by Melnikov's method match up to those obtained by numerical simulation. Therefore, the proposed method can be used to judge whether the chaotic motion happens or not.
关 键 词:亚音速流 壁板 混沌 MELNIKOV方法
分 类 号:O326[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7