检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学机械工程学院,江苏南京210094
出 处:《兵工学报》2013年第4期392-397,共6页Acta Armamentarii
基 金:国家自然科学基金项目(51175266/E050604)
摘 要:提出了一种两自由度弹药协调器结构方案,研究了其在安装基础存在随机振动情况下的受控动力学行为。把安装基础的振动处理为弹药协调器所受的不确定性外部扰动力,并忽略弹药协调器对安装基础的作用,同时假设外部扰动力和控制力大小有界;根据协调器的第二类La-grange方程以及一种特殊给定的隐式Lyapunov函数,建立了协调器的非线性控制算法以及结构与控制的耦合动力学方程;利用牛顿迭代法与龙格库塔法,求解了上述受控系统动力学方程。计算结果表明,所提出的两自由度弹药协调器可以实现弹药在存在随机基础振动情况下的准确协调定位。A novel 2-DOF ammunition coordinator structure scheme is proposed, and the controlled dynamics behavior of the coordinator is studied by considering the influence of the random vibration of its installation base. The random vibration of base is treated as one kind of external disturbance forces acting on the coordinator, and the action of the coordinator on the base is negligible. On the assumption that the external disturbance force and the control force are bounded, a nonlinear control algorithm and the structure-control coupling dynamics equations of the coordinator are established based on the second kind Lagrange equations and a special implicitly given Lyapunov function. The dynamics equations are solved by a numerical algorithm based on Newton's method and the Runge-Kutta method. The simulation result shows that the proposed 2-DOF ammunition coordinator can be used to realize the accurate coordination and positioning control of the ammunitions.
关 键 词:兵器科学技术 弹药协调器 动力学 隐式Lyapunov函数 控制
分 类 号:TG156[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46