检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学工学院力学与工程科学系,北京100871 [2]天津大学电气与自动化工程学院,天津300072
出 处:《系统科学与数学》2013年第4期383-397,共15页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金(60674019;61074088)资助课题
摘 要:针对受外部干扰的矩形广义系统研究了基于动态补偿的最优跟踪控制问题.所给定的二次指标中包含有期望输出和实际输出的误差信号.联立原系统、干扰系统及期望输出系统,将问题转化为无干扰的标准线性二次优化问题.进而给出具有适当动态阶的补偿器,使得闭环系统是容许的,且相关的矩阵不等式和Lyapunov方程的解存在.此外,二次性能指标可写成一个与该解和系统初值相关的表达式.进一步求解具有双线性矩阵不等式约束的优化问题,并给出相应的路径跟踪算法以求得性能指标最小值以及补偿器参数.最后,通过数值算例说明本文方法的有效性和可行性.The optimal tracking control for rectangular descriptor system with disturbance signal is considered based on the dynamic compensation. The given quadratic performance index contains the error signal of the real output and the reference output signal. In light of combining the original system with disturbance system and expected output system, this optimal tracking control problem is trans- formed into the standard linear-quadratic (LQ) optimal control problem without dis- turbance. Then a dynamic compensator with a proper dynamic order is given such that the closed-loop system is admissible and its associated matrix inequality and Lyapunov equation have a solution. Moreover, the quadratic performance index is derived to be a simple expression related to the solution and the initial value of the closed-loop system. Furthermore, the optimal problem is solved with the constraint of bilinear matrix inequality (BMI) and a corresponding path-following algorithm to minimize the quadratic performance index is proposed in which an optimal dynamic compensator is obtained. Finally, some numerical examples are provided to demon- strate the effectiveness and feasibility of the proposed results.
关 键 词:矩形广义系统 最优跟踪控制 动态补偿 路径跟踪算法 双线性矩阵不等式(BMI)
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158