检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高学慧[1,2] 黄淑娥[2] 颜流水[1] 祝必琴[2]
机构地区:[1]南昌航空大学环境与化学工程学院,江西南昌330063 [2]江西省气象科学研究所,江西南昌330046
出 处:《江西农业大学学报》2013年第2期290-295,共6页Acta Agriculturae Universitatis Jiangxiensis
基 金:科技部公益性行业科研专项(GYHY200906022;GYHY200906021)
摘 要:利用MODIS植被指数产品,对江西省双季早稻总产进行的估算。以江西省行政区划为分区,2005—2009年江西省8个主要水稻种植区域为样本,对分区内早稻总产与分区内增强型植被指数值之和进行相关性分析,结果表明二者之间显著相关。通过建立一元线性回归与多元回归方程的方法构建了江西省早稻估产模型,利用2001—2004年及2010年的数据对模型进行验证与预测,综合均方根误差与相对误差选择出了最优模型。最优模型表明利用分蘖期与拔节期两个时期的增强型植被指数建立的模型最适宜江西省水稻总产的估算,利用该模型对江西省2010年省级早稻总产估算的结果与统计值的相对误差为0.8%,对江西省双季早稻的遥感估产工作具有一定的指导意义。MODIS vegetation index products were used to estimates total yield production of early rice in Jiangxi Province. The study of rice yield estimation division was based on the administrative divisions of Jiangxi Province. Eight major rice - growing regions of Jiangxi Province were choosen as the samples, An analysis of the total production of early rice and the sum of the enhanced vegetation index value in the eight divisions during 2005 - 2009 was made. The correlation analysis results showed that they were significantly related. The yield estimation models were built through the establishment of linear regression and multiple regression equations. One optimal model was selected with an integrated consideration of their root mean square error and relative error with the data of 2001 to 2004. The optimal model established with the enhanced vegetation index during the tillering and jointing stages showed that the two periods were most appropriate for the estimation of the total rice production in Jiangxi Province. The relative error of the provincial production estimation result with the optical model is 0.8% which has certain significance for early rice yield estimation in Jiangxi Province.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28