检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:芮挺[1] 曹鹏[1] 张金林[1] 马光彦[1] 孙仁武[1]
机构地区:[1]解放军理工大学野战工程学院,江苏南京210007
出 处:《山东科技大学学报(自然科学版)》2013年第2期90-93,共4页Journal of Shandong University of Science and Technology(Natural Science)
基 金:国家自然科学基金项目(61070104)
摘 要:针对传统的梯度方向直方图(HOG)行人检测方法计算复杂、实时性较差的问题,提出了一种改进的HOG行人检测方法。首先,利用高斯混合模型背景建模,去除大部分背景图像,减少滑动窗口扫描区域,以提高检测速度。同时,选择头肩特征作为行人检测依据,计算多尺度HOG特征,减少计算量,降低因姿态变化遮挡等引起的误检测率。通过行人头肩特征图像库的实验证明,该方法能有效提高检测速度,并得到较高的检测精度。Aiming at the complex process and the poor real-time of the traditional HOG(histograms of oriented gradient) pedestrian detection method, this paper presented an improved one. First,the mixture Gaussian model was used to build a background model, the majority of the background image removed, the scan regions of the sliding windows reduced and the detection speed improved. Then the multilevel head-shoulder HOG feature was selected as the measure to detect and compute the pedestrian multilevel HOG, reducing the computation and also lowing the false detection rate due to the attitude change or part body sheltered. Finally, the experimental results of our own head- shoulder pedestrian database show that this improved method can improve the detection speed effectively and get a higher detection accuracy.
关 键 词:行人检测 高斯混合建模 头肩特征 多尺度梯度方向直方图
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.37.16