检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴建军[1] 杨俊华[1] 杨梦丽[2] 曾君[3] 杨金明[3]
机构地区:[1]广东工业大学,广东广州510006 [2]河南省电力公司检修公司,河南郑州450052 [3]华南理工大学,广东广州510641
出 处:《微特电机》2013年第5期4-8,共5页Small & Special Electrical Machines
基 金:国家自然科学基金项目(60904078);广东省教育厅专项重点实验室项目(IDSYS200701);广东高校优秀青年创新人才培养计划项目(2012LYM_0052);广州市科技攻关项目(11A52081158);广东省省部产学研(2011B090400046)
摘 要:为提高风力发电机故障诊断的可靠性,结合小波变换,提出一种遗传算法优化BP神经网络(GA-BP)的综合优化算法。利用单子带重构改进小波变换方法对风力发电机的定子电流信号进行分解与重构,提取准确的特征量;通过遗传算法的选择、交叉、变异等操作和全局寻优特性获取稳定的权值和阈值,赋值于BP网络作为初始值;借助BP网络的自学习、寻优具有精确性等特性不断训练网络;最后以BP神经网络的非线性映射能力完成对风力发电机的故障诊断。算法对比和实例分析表明,该算法对风力发电机的故障诊断有良好的实用性。A sort of the genetic algorithm BP (GA-BP) neural network method was put to heighten the reliability of fault diagnosis in wind turbines with the wavelet transform. With the wavelet transform improved by single sub-band recon-struction, the signals of the stator current of the wind generator were resolved and reconstructed to extract the precise charac- teristic quantity. The stable weight and threshold were selected as the initial value of BP neural network by the selection, crossover, mutation operator and the global optimum capability of GA. The neural network was training repeatedly with the self-learning and precise optimum characteristic of BP network. The fault diagnosis of the wind generator were completed by the input-output nonlinear mapping ability of BP neural network. The algorithm comparison and real case analysis show that the algorithm has a good practicability in the fault diagnosis of the wind generator.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38