检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐少平[1] 刘小平[1] 李春泉[1] 胡凌燕[1] 杨晓辉[1]
出 处:《江西师范大学学报(自然科学版)》2013年第2期199-205,共7页Journal of Jiangxi Normal University(Natural Science Edition)
基 金:国家自然科学基金(61163023);江西省自然科学基金(20114BAB211024);江西省教改课题(JXJG12124)资助项目
摘 要:利用Hermite多项式逼近法研究使用3次Hermite曲线逼近有理Conic曲线段的方法,推导3次Hermite曲线与Conic曲线段在端点处具有G2连续性、在中点具有G1连续性、保形几何属性需要满足的条件以及误差函数计算公式,通过多组不同类型的对比试验进一步证明了所述的关于用3次Hermite曲线逼近Conic曲线段有关性质的有效性.By the Hermite polynomicals method,an approach to approximate Conic sections in the form of a rational Bezier curve with Hermite polynomial curves is studied.The property condition of constructed Hermite polynomial curve such as G2-continuity with the Conic section at the end points and G1-continuity at the parametric mid-point and shape-preserving has been proposed.Explicit error bound is also derived and discussed.The validity of the proposed method for approximating Conic sections with Hermite polynomial curves is further proved through multiples sets of different types of comparative tests.
关 键 词:数值分析 Conic曲线段 HERMITE曲线 逼近 保形
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38