检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学航空航天学院,上海200240 [2]加州大学伯克利分校理学院应用数学与经济学系
出 处:《计算机工程与应用》2013年第11期145-148,152,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61074106)
摘 要:针对传统的智能交通系统中违章车辆检测方法实时性差、易受光照变化条件变化制约,影响后续辨别车辆违章和图像取证抓拍的问题,提出了一种基于颜色差分直方图和卡尔曼滤波的鲁棒、快速的违章车辆检测跟踪算法。该算法采用背景模糊匹配思想,选择初始背景图像;利用对环境变化鲁棒的颜色差分直方图算法检测运动目标;对运动目标团块的质心运动状态采用卡尔曼滤波进行跟踪预测,从而在预测的区域内检测同一目标团块;通过判断其质心运动轨迹,达到辨别违章车辆检测与抓拍的目的。通过对真实道路中不同天气条件下的场景进行检测,实验结果表明该算法能够快速而准确地检测违章车辆。As traditional intelligent traffic detection systems have poor real-time capability and can be easily influenced by illu- mination variations, which leads to a problem in identifying vehicles peccancy and capturing the image about them. A robust and fast vehicles peccancy detection and tracking method is proposed based on color difference histogram algorithm and Kalman fil- ter. Background fuzzy matching method is used to select initial background images. Color difference histogram algorithm which is robust to environmental change is used to detect moving targets. Kalman filter is used to track and predict the mass centroid of the moving targets in order to detect the same target in the predictive zone. The trajectory of the mass center is used to identify them and capture them. The experimental results through the detection of the actual roadway scene under different environments demonstrate that the proposed method can identify vehicles peccancy fast and accurately.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249