机构地区:[1]Department of Urology, Angers University Hospital, Angers 49933, France [2]CeRePP, Tenon Hospital, Paris 75970, France [3]Department of Biochemistry, N'imes University Hospital, NTmes 30029, France [4]Plate-Forme Technologique de Biotechnologie Moleculaire, Angers University, Angers 49933, France [5]5CEA, DSV, IRCM, SREIT, Laboratoire de Cancerologie Experimentale, Fontenay-aux-Roses 92265, France
出 处:《Asian Journal of Andrology》2013年第3期413-420,共8页亚洲男性学杂志(英文版)
摘 要:Diethylstilbestrol (DES) has a direct cellular mechanism inhibition on prostate cancer. Its action is independent from the oestrogen receptors and is preserved after a first-line hormonal therapy. We aimed to identify proteins involved in the direct cellular inhibition effects of DES on prostate cancer. We used a clonogenic assay to establish the median lethal concentration of DES on 22RV1 cells. 22RV1 cells were exposed to standard and DES-enriched medium. After extraction, protein expression levels were obtained by two-dimensional differential in-gel electrophoresis (2D-DIGE) and isotope labelling tags for relative and absolute quantification (iTRAQ). Proteins of interest were analysed by quantitative RT-PCR and western blotting. The differentially regulated proteins (P〈0.01) were interrogated against a global molecular network based on the ingenuity knowledge base. The 2D-DIGE analyses revealed DES-induced expression changes for 14 proteins (〉 1.3 fold; P〈0.05). The iTRAQ analyses allowed the identification of 895 proteins. Among these proteins, 65 had a modified expression due to DES exposure (i.e., 23 overexpressed and 42 underexpressed). Most of these proteins were implicated in apoptosis and redox processes and had a predicted mitochondrial expression. Additionally, ingenuity pathway analysis placed the OAT and HSBP1 genes at the centre of a highly significant network. RT-PCR confirmed the overexpression of OAT (P=0.006) and HSPB1 (P=0.046).Diethylstilbestrol (DES) has a direct cellular mechanism inhibition on prostate cancer. Its action is independent from the oestrogen receptors and is preserved after a first-line hormonal therapy. We aimed to identify proteins involved in the direct cellular inhibition effects of DES on prostate cancer. We used a clonogenic assay to establish the median lethal concentration of DES on 22RV1 cells. 22RV1 cells were exposed to standard and DES-enriched medium. After extraction, protein expression levels were obtained by two-dimensional differential in-gel electrophoresis (2D-DIGE) and isotope labelling tags for relative and absolute quantification (iTRAQ). Proteins of interest were analysed by quantitative RT-PCR and western blotting. The differentially regulated proteins (P〈0.01) were interrogated against a global molecular network based on the ingenuity knowledge base. The 2D-DIGE analyses revealed DES-induced expression changes for 14 proteins (〉 1.3 fold; P〈0.05). The iTRAQ analyses allowed the identification of 895 proteins. Among these proteins, 65 had a modified expression due to DES exposure (i.e., 23 overexpressed and 42 underexpressed). Most of these proteins were implicated in apoptosis and redox processes and had a predicted mitochondrial expression. Additionally, ingenuity pathway analysis placed the OAT and HSBP1 genes at the centre of a highly significant network. RT-PCR confirmed the overexpression of OAT (P=0.006) and HSPB1 (P=0.046).
关 键 词:cultured cells DES DIETHYLSTILBESTROL ingenuity pathway analysis isotope labelling mass spectrometry prostate cancer PROTEOMICS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...