汉语语音识别中基于音节的声学模型改进算法  被引量:1

Improved syllable-based acoustic modeling for continuous Chinese speech recognition

在线阅读下载全文

作  者:晁浩[1,2] 杨占磊[2] 刘文举[2] 

机构地区:[1]河南理工大学计算机科学与技术学院,河南焦作454000 [2]中国科学院自动化研究所模式识别国家重点实验室,北京100190

出  处:《计算机应用》2013年第6期1742-1745,共4页journal of Computer Applications

基  金:国家自然科学基金资助项目(91120303,90820303,90820011);国家973计划项目(2004CB318105);国家863计划项目(20060101Z4073,2006AA01Z194)

摘  要:针对汉语语音识别中协同发音现象引起的语音信号的易变性,提出一种基于音节的声学建模方法。首先建立基于音节的声学模型以解决音节内部声韵母之间的音变现象,并提出以音节内双音子模型来初始化基于音节声学模型的参数以缓解训练数据稀疏的问题;然后引入音节之间的过渡模型来处理音节之间的协同发音问题。在"863-test"测试集上进行的汉语连续语音识别实验显示汉语字的相对错误率下降了12.13%,表明了基于音节的声学模型和音节间过渡模型相结合在解决汉语协同发音问题上的有效性。Concerning the changeability of the speech signal caused by co-articulation phenomenon in Chinese speech recognition, a syllable-based acoustic modeling method was proposed. Firstly, context independent syllable-based acoustic models were trained, and the models were initialized by intra-syllable IFs based diphones to solve the problem of training data sparsity. Secondly, the inter-syllable co-articulation effect was captured by incorporating inter-syllable transition models into the recognition system. The experiments conducted on “863-test” dataset show that the relative character error rate is reduced by 12.13%. This proves that syUable-based acoustic model and inter-syllable transition model are effective in solving co- articulation effect.

关 键 词:语音识别 协同发音 音变 声学建模 音节模型 

分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象