检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学自动化测试与控制研究所,哈尔滨150080
出 处:《仪器仪表学报》2013年第5期1195-1200,共6页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(61201305)资助项目
摘 要:针对带复杂有色噪声的线性广义系统,提出了矩阵加权融合稳态Kalman滤波器。应用奇异值分解将原广义系统滤波问题转化为两个正常子系统滤波问题。通过状态增广与量测变换法将有色过程噪声、有色量测噪声化为白噪声,因此问题转化为带相关白噪声正常系统Kalman预报问题。基于线性最小方差意义与矩阵加权融合准则得到了复杂有色噪声作用下的广义系统融合Kalman预报器,进而得到带复杂有色噪声的原广义系统滤波器。该滤波加权融合算法精度高于各单传感器局部滤波器,低于集中式融合滤波器。Monte-Carlo仿真实验证明了该滤波融合算法的有效性与可行性。Aiming at the descriptor systems with complex coloured noise, a steady-state Kalman filter with fusion weigh- ted by matrix is presented. By using the singular value decomposition, the filtering problem of descriptor system is trans- formed into the filtering problems of two normal subsystems. State augmentation and measurement transformation method are applied to transform the coloured process noise and coloured observation noise into white noises. So these problems are transformed to Kalman prediction problems of normal systems with correlated white noise. A steady-state descriptor Kalman predictor with complex coloured noise is derived on the basis of linear minimum mean square error estimation and fusion criterion weighted by matrices. Then, the filter for original descriptor system with coloured noise is derived. The precision of the filtering weighted fusion algorithm is higher than that of the local Kalman filter for every sensor and is lower than that of optimal centralized Kalman fusion filter. Monte-Carlo simulation experiment proves the effective- ness and feasibility of the filtering fusion algorithm.
关 键 词:复杂有色噪声 卡尔曼 广义系统 矩阵加权融合准则
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229