检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学三峡库区生态环境教育部重点实验室,重庆400045 [2]中国煤炭科工集团重庆设计研究院,重庆400016 [3]江苏省交通规划设计院,江苏南京210005
出 处:《中国给水排水》2013年第11期26-29,共4页China Water & Wastewater
基 金:国家水体污染控制与治理科技重大专项(2009ZX07424-004);国家科技支撑计划项目(2012BAJ25B06-001)
摘 要:针对水厂净水过程中混凝投药控制过程具有影响因素多、滞后性大和非线性的特点,依托实际项目,结合BP神经网络建立了短程反馈混凝投药自控模型。模拟水厂混凝沉淀工艺开发了中试装置,并对模型进行离线检测和连续运行,结果表明:BP神经网络模型的混凝剂投加量预测值与实际值的相对误差不超过6%;在模拟斜管中取水检测沉后水浊度,可缩短停留时间约20min;短程反馈BP神经网络混凝投药自控模型对不同季节的长江水均具有良好的适应性和较高的灵敏度,能控制沉后水浊度稳定在目标范围内。Considering multiple influence factors, large delay and nonlinearity of coagulant dosage control at water treatment plants, an automatic control model of coagulant dosage with short-range feedback was established using BP neural network. The pilot plant was developed by simulating the coagula- tion and sedimentation process of a water treatment plant, while offline detection and continuous operation of the model were carried on. The results showed that the relative error was less than 6% between the predicted and the actual coagulant dosages. Water samples were taken from the simulated inclined pipe and analyzed for effluent turbidity, which could shorten the residence time by approximately 20 rain. The automatic control model of coagulant dosage with short-range feedback BP neural network showed a high sensitivity and could be applied to treatment of to the Yangtze River source water in different seasons. The effluent turbidity could be stably controlled within the target range.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38