检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院广州能源研究所,广东广州510640 [2]中山大学智能交通研究中心广东省智能交通系统重点实验室,广东广州510006
出 处:《环境科学与技术》2013年第5期156-161,共6页Environmental Science & Technology
基 金:国家科技支撑计划项目(2011BAG07B00);国家自然基金项目(51108471);广东省自然科学基金(S2011040002839)
摘 要:为提高城市空气质量预报准确率,文章在传统BP神经网络的基础上提出了基于气象相似准则的样本优化方法,建立了三层样本筛选优化机制,确定了阀值及权重矩阵,从而建立了城市空气质量动态预报模型。将模型应用在广州8个空气质量监测站点的预报上,并与传统的BP神经网络空气质量预报模型进行了对比分析,效果良好。分析结果表明,广州8个空气质量监测站点的SO2、NO2、PM10/2.5的实测值与预报值的平均绝对误差分别为0.016 mg/m3、0.014 mg/m3、0.020 mg/m3,级别预报准确性评分分别为89.6、92.6和84.6,预报准确度综合评分达81.6,并且比传统神经网络模型具有更高的预报精度。A simple optimized method based on the meteorological similarity criteria and the traditional BP neural network was proposed in this paper.Through setting up an optimization mechanism of three-tiered sample screening as well as the threshold and weighing matrix,a dynamic forecast model for urban air quality was established.Applications of this model to forecasting air quality with respect to SO2,NO2 and PM10/2.5 in eight monitoring stations of Guangzhou City showed the better results in terms of prediction accuracy than those using traditional BP neural network model,with a general mark of 81.6 for prediction accuracy.
关 键 词:空气质量动态预报 气象相似准则 样本优化 BP神经网络
分 类 号:X823[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3