检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山东理工大学学报(自然科学版)》2013年第2期14-18,共5页Journal of Shandong University of Technology:Natural Science Edition
基 金:山东省自然科学基金重点资助项目(ZR2010AZ003)
摘 要:传统边界元法分析各向异性薄体问题时涉及奇异边界积分和拟奇异边界积分的处理,估计这些积分具有相当的难度而且耗时.提出了求解二维各向异性位势薄体问题的虚边界元方法,给出了求解此类问题的新途径,同时拓展了虚边界元法的应用范围.数值算例表明,虚边界元法可有效求解二维各向异性位势薄体问题,且方法简单、精度高、易于程序设计.The analysis of anisotropic thin-body problem with boundary element method involve to singluar and nearly singular integrals which is hard and time-consuming to estimate. In this pa- per, the virtual boundary element method(VBEM) for solving anisotropic thin-body problem in 2D potential theory is presented. It provides a new approach to dealing with such problems. Meanwhile, it extends the application field of VBEM. The numerical results obtained by proposed method prove that the VBEM is not only an efficient tool for solving 2D anisotropic thin-body problems in potential, but also a simple and easily programmed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.182.74