检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《火力与指挥控制》2013年第5期37-41,共5页Fire Control & Command Control
基 金:2011高校博士点基金(20116102110026);西工大基础研究基金资助项目(JC201012)
摘 要:针对异构多无人机协同任务分配问题,提出了一种基于改进的遗传算法的多UAV任务分配方法。根据多UAV协同任务分配问题的特点,设计了新的遗传算子,并且对适应度值做了标定,有效避免了算法在最优解附近摆动现象的发生,从而提高了任务分配的效率。充分利用改进遗传算法的全局搜索能力,有效地解决多约束条件下多UAV协同目标分配问题。仿真结果表明,改进的遗传算法能够稳定快速地找到较优分配方案,并且算法简单有效。Aiming at the problem of multi heterogeneous UAVs cooperative task assignment,a task assignment method for heterogeneous multi-UAVs had been presented, which based on improved genetic algorithm. According to the characteristics of muhi-UAV cooperative task assignment, a new genetic operators is designed and the value of the fitness is calibrated to avoid effectively the phenomenon of algorithm swing?near the optimal solution, and increase?the efficiency of?task assignment. Take full advantage of the global search ability of genetic algorithms to solve multi-UAV target allocation problem under the multi-constraint coordination effectively. The simulation results show that the improved genetic algorithm can find better distribution program stability and quickly, and the algorithm is simple and effective.
关 键 词:异构无人机协同 任务分配 遗传算法 适应度值标定
分 类 号:V279[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13