检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾泂[1] 付芳梅[1] 郑忠龙[1] 赵建民[1] 郭丽[1] 张海新[1] 俞牡丹[1]
机构地区:[1]浙江师范大学数理与信息工程学院,浙江金华321004
出 处:《浙江师范大学学报(自然科学版)》2013年第2期121-126,共6页Journal of Zhejiang Normal University:Natural Sciences
基 金:国家自然科学基金资助项目(61170109);浙江省科技厅公益性应用研究计划项目(2012C21021)
摘 要:随着稀疏编码与压缩传感理论的逐步发展,如何应用于图像的超分辨率成为研究热点之一.基于示例学习的算法,提出了一种新的超分辨率算法,其特点在于只基于低分辨率图像本身,没有额外的样本库,运用自然图像的自相似性与冗余性,学习低分辨率图像块与高分辨率图像块之间的函数关系.为了从图像中获取更加全面的信息,采用Guided滤波、一阶导数和二阶导数2种方法来提取特征.此外,提出了一种新的字典学习算法R-KSVD,并且改进了后项处理过程.实验结果显示,提出的算法具有较好的超分辨率效果和稳定性.With the development of sparse coding and compressive sensing,image super-resolution reconstruction attracted extensive attentions.Based on the example-based algorithm,it was proposed a new super-resolution method.It exploited the relationship between the low image patches and the high image patches by the self-similarity of a natural image.The proposed method applied guided filter,the first-order and second-order derivatives to extract two kinds of features from the LR image,which was superior to using only one feature space.Besides,the effective dictionary was constructed by a novel algorithm called Relaxation K-SVD(R-KSVD).Moreover,a new approach was proposed to estimate better HR residual image in the Back Projection.Experimental results demonstrated the superiority of the algorithm in both visual fidelity and numerical measures.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.238.90