检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:施慧华[1]
出 处:《厦门大学学报(自然科学版)》2013年第3期306-308,共3页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金专项数学天元基金项目(11226129);华侨大学高层次人才科研启动基金项目(10BS215)
摘 要:给定有限测度空间(Ω,A,μ),令MX(A)=span{∑ni=1=χAixi,Ai∈A,xi∈X,n∈N}L∞(μ,X).证明了(Ω,A)上的向量值有限可加测度m是可列可加的当且仅当其对应泛函U是w*-序列连续的,对应关系由U(x)=∫Ωdm(x∈MX(A))确定.并借助于向量值测度的Yosida-Hewitt分解定理,进一步证明了任一定义于MX(A)上的连续线性泛函均能唯一分解成w*序列连续泛函与纯连续泛函的l和.For a finite measure space ((Ω,A,μ),let Mx(A) be the space of the uniform limits of the form ∑χ_Ai x_i (finite sum) withA, A_i∈A and xi∈ X. In this paper we show that a sufficient and necessary condition for a finitely additive vector-valued measure m on(Ω,A)to be countably additive is that the corresponding functional U defined by U(x) = ∫Ωx Jdm (for x∈Mx(A)) is w* -sequentiallycontinuous. With help of the Yosida-Hewitt decomposition theorem of vector-valued case,we show consequently that every continu-ous linear functional on Mx (A) can be uniquely decomposed into the 11-sum of a w*-sequentially continuous functional and a purely continuous functional.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7