检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗燕龙[1] 刘伟盛[1] 戴平阳[1] 李翠华[1]
机构地区:[1]厦门大学信息科学与技术学院,福建厦门361005
出 处:《厦门大学学报(自然科学版)》2013年第3期343-348,共6页Journal of Xiamen University:Natural Science
基 金:国防基础科研计划项目;高等学校博士学科点专项科研基金(20110121110020);国防科技重点实验室基金
摘 要:提出了一种基于局部稀疏表示模型的跟踪方法来有效解决跟踪过程中的目标遮挡问题.首先对目标进行分块,然后对每个块分别构造其稀疏字典,并通过衡量候选区域中每个块与目标模板对应块的相似度,获得每个块在目标图像中可能位置的置信图;再结合每个块置信图从而获得目标位置的最佳估计.实验结果表明,该方法与各种流行跟踪算法相比稳定可靠且具有良好的抗遮挡性,并对海上红外目标跟踪取得良好效果.实验结果验证了将稀疏表示应用在海上红外目标跟踪中的有效性及其良好的应用前景.The sparse representation has been widely used in many areas. Part-based representation performs outstandingly by using the holistic templates representation to against occlusion. In this paper we propose a robust object tracking method using part based sparsity model for tracking an infrared object on the sea. In this model,one object is represented by image patches. "File candidates of these patches are sparsely represented in the space spanned by the patch templates and trivial templates. We use a part-based method that takes the spatial information of each patch into consideration with the vote maps of the multiple patches. Furthermore, the update scheme dynamically keeps the representativeness of the templates. Therefore,our tracker can effectively deal with the changes of ap- pearances and heavy occlusion. On the sequences of infrared object on the sea and public benchmarks sequences, the abundant results of experiments launched demonstrate that our proposed visual tracking method outperforms many existing state-of-the art algo- rithms.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249