基于CA-Markov的香格里拉县森林景观格局变化及预测  被引量:11

Change and Prediction of Forest Landscape Pattern in Shangri-La County Based on CA-Markov

在线阅读下载全文

作  者:张加龙[1] 胥辉[1] 岳彩荣[1] 袁华[1] 

机构地区:[1]西南林业大学,昆明650224

出  处:《东北林业大学学报》2013年第6期46-49,65,共5页Journal of Northeast Forestry University

基  金:国家林业局林业公益性行业科研专项(200904045);西南林业大学国家林业局森林经理学重点学科(XKZ200901)

摘  要:根据香格里拉县的区域特点,确定了香格里拉县的森林景观分类系统。通过对1989、1999年和2009年三期Landsat TM遥感影像的解译和验证,得到森林景观格局图。利用CA-Markov模型对2009年森林景观格局进行模拟,模拟结果与实际景观格局的Kappa指数为0.783 2,具有较高的可信度。再利用该模型对香格里拉县2019年森林景观格局进行模拟,结果表明:2009—2019年香格里拉县景观类型变化明显,高山草甸、农地、未利用地面积减小速度有所减缓,主要转换为建筑用地、其他乔木、落叶松、栎类;云冷杉、高山松、栎类、云南松、落叶松、其他乔木、灌木林地、其他林地、建筑用地、水域面积持续增大,前4类优势树种年均增长幅度分别为0.24%、0.18%、0.46%、0.07%。政府部门应继续加大对过度放牧的管制和制定合理的森林资源保护政策,从而更好的保护香格里拉县森林生态环境。A forest landscape classification system was established considering the regional characteristics of the Shangri-La County. Three periods of forest landscape pattern map were got by classifying and validating by using Landsat TM images of 1989, 1999 and 2009. The 2009 landscape pattern of Shangri-La was simulated based on CA-Markov model. The simulation result had high reliability with the Kappa coefficient of O. 783 2 in comparison with actual situation. Then, the model was used to simulate the 2019 forest landscape pattern. The result shows the 2009-2019 landscape patterns of Shangri-La County changes obviously. The Shangri-La County alpine meadows, agricultural land and unused land decrease slowly and mainly convert to building land, trees, larch and the oak. Spruce-fir, mountain pine, oak, Yunnan pine, larch, other arbor, shrubs, other woodlands, building land and water area increase steadily. An average annual growth rate of the first four categories of dominant tree species are 0.24% , 0.18% , 0.46% and 0.07%. The government should continue to control overgrazing and develop reasonable protection policy for forest resources for better protecting the forest ecological environment of Shangri-La County.

关 键 词:马尔科夫模型 元胞自动机 森林景观格局 预测 香格里拉县 

分 类 号:P901[天文地球—自然地理学] S771.8[农业科学—森林工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象