Cytotoxicity and genome-wide microarray analysis of intestinal smooth muscle cells in response to hexavalent chromium induction  

Cytotoxicity and genome-wide microarray analysis of intestinal smooth muscle cells in response to hexavalent chromium induction

在线阅读下载全文

作  者:Li-Fang JIN Yuan-Yuan WANG Zi-Dong ZHANG Yi-Meng YUAN Yi-Rui HU Yang-Feng WEI Jian NI 

机构地区:[1]College of Life Science of Shaoxing University

出  处:《Zoological Research》2013年第3期I0019-I0026,共8页动物学研究(英文)

基  金:Zhejiang Natural Sciences Foundation Y2110911

摘  要:Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice; however, information on its toxicity on intestinal smooth muscle cells is limited. The present study aimed to assess the in vitro and in vivo toxicological effects of Cr(VI) on intestinal smooth muscle cells. Human intestinal smooth muscle cells (HISM cells) were cultured with different concentrations of Cr(VI) to evaluate effects on cell proliferation ability, oxidative stress levels, and antioxidant system. Furthermore, tissue sections in Cr(VI) exposed rabbits were analyzed to evaluate toxicity on intestinal muscle cells in vivo. Gene chips were utilized to assess differential gene expression profiles at the genome-wide level in 1 gmol/L Cr(VI) treated cells. Intestinal tissue biopsy results showed that Cr(VI) increased the incidences of diffuse epithelial hyperplasia in intestinal jejunum but caused no obvious damage to the structure of the muscularis. Cell proliferation analysis revealed that high concentrations (〉__64 gmol/L) but not low concentrations of Cr(VI) (〈16 ~tmol/L) significantly inhibited the growth of HISM cells. For oxidative stress levels, the expression of reactive oxygen species (ROS) and nitric oxide (NO) was elevated at high concentrations (〉64 pmol/L) but not at low concentrations of Cr(VI) (〈16 pmol/L). In addition, dose-dependent increases in the activity of oxidized glutathione (GSSH)/total-glutathione (T-GSH) were also observed. Gene chip screened 491 differentially expressed genes including genes associated with cell apoptosis, oxidations, and cytoskeletons. Some of these differentially expressed genes may be unique to smooth muscle cells in response to Cr(VI) induction.Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice; however, information on its toxicity on intestinal smooth muscle cells is limited. The present study aimed to assess the in vitro and in vivo toxicological effects of Cr(VI) on intestinal smooth muscle cells. Human intestinal smooth muscle cells (HISM cells) were cultured with different concentrations of Cr(VI) to evaluate effects on cell proliferation ability, oxidative stress levels, and antioxidant system. Furthermore, tissue sections in Cr(VI) exposed rabbits were analyzed to evaluate toxicity on intestinal muscle cells in vivo. Gene chips were utilized to assess differential gene expression profiles at the genome-wide level in 1 gmol/L Cr(VI) treated cells. Intestinal tissue biopsy results showed that Cr(VI) increased the incidences of diffuse epithelial hyperplasia in intestinal jejunum but caused no obvious damage to the structure of the muscularis. Cell proliferation analysis revealed that high concentrations (〉__64 gmol/L) but not low concentrations of Cr(VI) (〈16 ~tmol/L) significantly inhibited the growth of HISM cells. For oxidative stress levels, the expression of reactive oxygen species (ROS) and nitric oxide (NO) was elevated at high concentrations (〉64 pmol/L) but not at low concentrations of Cr(VI) (〈16 pmol/L). In addition, dose-dependent increases in the activity of oxidized glutathione (GSSH)/total-glutathione (T-GSH) were also observed. Gene chip screened 491 differentially expressed genes including genes associated with cell apoptosis, oxidations, and cytoskeletons. Some of these differentially expressed genes may be unique to smooth muscle cells in response to Cr(VI) induction.

关 键 词:Intestinal smooth muscle cells Hexavalent chromium CYTOTOXICITY Gene chip 

分 类 号:Q2-33[生物学—细胞生物学] Q78

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象