BP神经网络在砂岩储层流体识别中的应用  被引量:3

在线阅读下载全文

作  者:杨超超[1] 张磊[1] 吴俊晨[1] 黄若坤[1] 宋秋强[1] 

机构地区:[1]长江大学地球物理与石油资源学院,湖北武汉430100

出  处:《科技资讯》2013年第5期11-11,13,共2页Science & Technology Information

摘  要:莫北地区侏罗纪三工河组,岩性主要是中、细砂岩,属低孔低渗储层,所以储层流体性质的识别是该地区急需解决的问题。针对常规测井储层识别准确率不佳的情况,提出了Bp神经网络这种数学方法进行储层的油、气、水、干层的识别。提出43个试油层段的测井曲线特征值,以对流体性质敏感并且在交会图上具有比较明显区分度的密度值(DEN)、孔隙度(POR)、电阻率值(RT)和含水饱和度值(SW)作为输入向量,经程序训练判别准确率达到满足的要求后根据得到的权值、阈值编写神经网络预测的程序挂接在测井解释软件中,从而实现了Bp神经网络在储层中的自动化识别。

关 键 词:BP神经网络 流体识别 测井解释 

分 类 号:P631.8[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象