检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘文[1,2]
机构地区:[1]大连理工大学计算机科学技术学院,大连116024 [2]新疆机电职业技术学院电气工程系,乌鲁木齐830011
出 处:《清华大学学报(自然科学版)》2013年第2期247-251,共5页Journal of Tsinghua University(Science and Technology)
基 金:新疆维吾尔自治区高校科研计划资助项目(XJEDU2010S48)
摘 要:校车安排调度问题是一个长久以来一直困扰着各个学校的资源多目标组合优化问题。该文采用基于满意优化模型和免疫蚁群算法进行模型的建立与求解。满意优化理论的关键是建立一个反映变量取值与客户心理反应之间关系的数学形式,即客户满意度和客户满意度函数。采用免疫算法和基本蚁群算法来搜索局部最优化,以此提高资源的利用率。为了检验该算法的实际应用效果,通过某大学两个校区的校车安排的具体问题来分析和研究,建立了基于满意优化的数学模型,并利用数学化语言对校车安排调度问题的影响因素、主要约束条件和求解目标等进行了描述和分析。通过免疫蚁群算法求解。结果表明:该方法可行且有比较显著的效果。The scheduling of school bus arrangements has been a multi-objective combinatorial optimization problem that plagues various schools for a long time. This paper attempts to build and solve a model based on the satisfactory optimization model and the immune ant colony algorithm. The key of satisfactory optimization theory is to establish a mathematical form to reflect the relationship between variable values and customers' psychological reactions. Local optimization was searched using the immune algorithm and basic ant colony algorithm to improve resource utilization, with a mathematical model then established by analyzing the school bus arrangements of two campuses at a university to test the practical application effect of the algorithm. Mathematical language was used to describe and analyze the influencing factors of the school bus scheduling problem, the main constraint conditions, and the solving goals. The results of solving by the immune ant colony algorithmshow that the proposed method is feasible with significant effects.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145