检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟子博[1] 姜虹[1] 陈婧[1] 袁波[1] 王立强[1]
机构地区:[1]浙江大学现代光学仪器国家重点实验室,浙江杭州310027
出 处:《浙江大学学报(工学版)》2013年第5期906-911,共6页Journal of Zhejiang University:Engineering Science
基 金:中央高校基本科研业务费专项资助项目(2012FZA5023);国家"十一五"科技支撑计划资助项目(2011BAI12B06)
摘 要:针对AdaBoost算法存在训练消耗大并且误检率较高的问题,提出一种基于AdaBoost的高效检测方法.它主要包含一种基于特征剪裁的AdaBoost算法(FPAdaBoost)和一种新的检测扫描方法———确认和跳过检测机制(CSDS).FPAdaBoost算法在每一轮训练中会根据分类误差剪裁掉一部分特征,提高算法的训练速度;而CSDS检测方法在传统的检测方法基础上引入验证和确认机制,在保证检测率的条件下有效控制误检的发生.在MITCBCL训练集和MIT+CMU检测集上对提出的方法进行验证,结果表明,FPAdaBoost算法相比原始AdaBoost算法在性能上没有明显退化,但却大大改善了训练速度,同时CSDS检测机制的引入极大地降低误检率,提高检测结果的可靠性.The AdaBoost algorithm is highly computational consuming and has high false positive rate. To deal with these problems, an efficient detection method based on AdaBoost, which consists of a Feature Pruning based AdaBoost (FPAdaBoost) algorithm and a confirmation and skipping detection scheme (CS- DS), is presented in this paper. FPAdaBoost cuts off features at a certain cutting coefficient according to the classification error in each iteration of training process, which effectively speeds up the learning process and greatly reduces the computational cost. And CSDS employs verification and confirmation scheme in the conventional scanning process, which effectively eliminates false positive detections. The performance of proposed detection method was tested in face detection using the MIT-CBCL training set and the MIT+ CMU test set. The results show that, compared with traditional Adaboost detection method, the training time of FPAdaBoost dramatically decreases without suffering a decline in classification capability, meanwhile the false positive rate is significantly reduced due to employing CSDS in the scanning process.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30