检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李向婷[1] 白洁[2,3] 李光录[1] 罗格平[2,3] 古丽.加帕尔 李均力[2,3]
机构地区:[1]西北农林科技大学,陕西杨凌712100 [2]荒漠与绿洲国家重点实验室,新疆乌鲁木齐830011 [3]中国科学院新疆生态与地理研究所,新疆乌鲁木齐830011
出 处:《干旱区地理》2013年第3期502-511,共10页Arid Land Geography
基 金:国家重点基础研究发展规划项目计划(973计划)(2009CB825105);国家自然科学基金(41101101)
摘 要:植被覆盖度信息是荒漠生态环境表征的重要指标之一。荒漠区地表植被稀疏,在遥感光谱信息中表现较弱,通用的植被覆盖度遥感提取方法应用于干旱荒漠区存在一定的局限性,为了探寻一种满足大尺度荒漠地区的植被覆盖度信息的提取方法,必须对比和分析现有的遥感方法在干旱荒漠区的应用效果。以新疆荒漠区为例,利用MODIS遥感影像和野外植被覆盖度实测数据,对常用的6种遥感植被覆盖度提取方法(改进的三波段梯度差法、像元二分法、线型混合像元分解法、归一化植被指数法、增强型植被指数法和修正型土壤调整植被指数法)的结果进行精度验证和对比分析。结果表明:MODIS影像上较难提取纯荒漠植被像元,用农作物的像元值代替会降低像元二分法和线性混合像元分解模型的模拟精度;植被指数法对地面实测数据依赖性较大,模拟的精度差异很大,仅考虑红光和近红外的归一化植被指数法模拟精度最低,而综合考虑土壤和大气因素的增强型植被指数法的模拟结果精度最高;改进的三波段最大梯度差法虽然模拟精度稍次之(R^2=0.74;RMSE=13.46),但依据光谱的物理特性,能显著地反映南、北疆荒漠植被覆盖度的差异,是目前大尺度的荒漠区覆盖植被信息提取较为适宜的方法之一。Vegetation coverage information is one of the significant indexes to represent desert eco-environment. Vegetation information of remote sensing spectral information is normally weaker due to the sparse vegetation in des- ert areas. There are various extraction methods of vegetation coverage using remote sensing data, which are limited in the application of arid desert. From this perspective, the comparison of different methods in desert areas will be es- sential way to find one feasible and suitable method of desert vegetation coverage information extraction at the larger scale within remote sensing. Taking desert areas in Xinjiang for example, six extraction methods of remote sensing (Modified maximal gradient difference model (Modified TGDVI), Pixel dichotomy model (PDM), Linear Spectral Unmixing (LSU) and vegetation index model ( NDVI, EVI, MSAVI2 ) ) were used to extract the vegetation frac- tion from MODIS images and the results were tested by observed data at field. It indicated that methods of vegetation index were mostly depends on the amount of observed values, so had different results. EVI which considered the factors of atmosphere and soil had the highest simulation accuracy while NDVI had the lowest accuracy of results as it only considered red and near-infrared radiation. Because it is difficult to extract pure desert vegetation pixel from MODIS images, using pixel values of crops instead of desert vegetation pixel could decreased the accuracy of PDM and LSU. With the better accuracy( R2 =0.74; RMSE =13.46), modified TGDVI could dramatically reflect the veg- etation fraction differences between the northern and southern desert in Xinjiang, and was the appropriate vegetation coverage information extraction method in such large scale of desert areas.
分 类 号:Q948[生物学—植物学] P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33