电子商务推荐系统中群体用户推荐问题研究  被引量:30

Research on Group Recommendation in E-commerce Recommender Systems

在线阅读下载全文

作  者:梁昌勇[1,2] 冷亚军[1,2] 王勇胜[3] 戚筱雯[1,2] 

机构地区:[1]合肥工业大学管理学院,安徽合肥230009 [2]过程优化与智能决策教育部重点实验室,安徽合肥230009 [3]东北电力大学建筑工程学院,吉林吉林132012

出  处:《中国管理科学》2013年第3期153-158,共6页Chinese Journal of Management Science

基  金:高等学校博士学科点专项科研基金项目(20110111110006);教育部人文社会科学研究青年基金项目(09YJC630055)

摘  要:尽管传统的电子商务推荐系统在个体用户推荐方面取得了巨大成功,但它并不适用于向群体用户进行推荐。随着虚拟社区中群体用户的不断增加,构建群体推荐系统,向群体用户提供个性化推荐,减少他们搜集信息所耗费的时间和精力显得越来越重要。基于此,本文提出了一种新颖的推荐方法结合领域专家法的群体用户推荐算法。该算法以基于项目的协同过滤技术为基础,根据群体成员间的相互作用确定群体偏好,由群体偏好产生推荐,推荐过程中存在的成员未评分项采用领域专家法进行预测填充,此外本文算法还考虑了成员间相似关系对推荐质量的影响。实验结果表明了本文算法的有效性。Although the traditional e-commerce recommender systems have achieved great success in recom- mending products to individuals, they are not suitable for group recommendation. As the number of groups increases rapidly in the virtual communities, building group recommender systems to provide per- sonalized services to groups becomes more and more imperative. Therefore, a group recommendation algo- rithm combined with domain expert imputation is proposed in this paper. The proposed algorithm is de- signed based on the framework of item-based collaborative filtering. It first identifies group preferences ac- cording to every member's preferences, and then generates recommendations based on the group prefer- ences. Especially, domain expert method is used to impute values for members' unrated items in the rec- ommendation process. In addition, the proposed algorithm considers the effects of member similarities on recommendation quality. The experimental results show that the proposed algorithm is effective.

关 键 词:电子商务推荐系统 群体用户推荐 协同过滤 领域专家法 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象