感潮河网区水量调控的调水总量计算  被引量:2

Calculation of total water diversion quantity of tidal river network in water quantity regulation

在线阅读下载全文

作  者:顾正华[1] 徐晓东[1] 曹晓萌[1] 刘旺[1] 

机构地区:[1]浙江大学建筑工程学院水利工程学系,浙江杭州310058

出  处:《人民长江》2013年第11期23-26,71,共5页Yangtze River

基  金:国家自然科学基金资助项目(50909085);浙江省水利厅科技计划项目(RC1106);水利部公益性行业专项经费(201101027);长江水利委员会长江科学院开放研究基金项目(CKWV2012322/KY)

摘  要:针对过去感潮河网调水总量计算缺乏实用的经验公式以及数学模型计算代价高、时效性差等问题,将感潮河网调水总量的计算转换为内河平均水位的计算,提出采用具有强大非线性映射能力的BP人工神经网络理论识别调水后内河平均水位与潮形、初始内河平均水位、闸门开启时的外河水位、调水方案等影响因素之间的复杂函数关系。人工神经网络的训练样本由河网非恒定流数学模型提供。在上海市浦东新区河网的应用结果表明,所建立的感潮河网水量调控的调水总量非线性计算模型计算简单、快速、准确,有利于感潮河网水量调控方案的正确评估和科学决策,对其他水利工程水量调控问题也具有较好的借鉴意义。In view of the problems of lacking appropriate empirical formula and high cost low timeliness by using mathematical model to calculate the total quantity of water diversion in tidal river network, a new calculation method is proposed, which transforms calculation of total quantity of water diversion in tidal river network into calculation of the average water level of inland rivers. It is proposed that the complicated function relation among the average level of inland rivers and the influencing factors of tide types, initial average level of inland rivers, outside river level at sluice opening and water diversion scheme is identified by BP- ANN possessing powerful nonlinear mapping capability. ANN model's training samples are obtained through unsteady numerical simulation of river networks. The application result in river network of Pudong New Zone indicates that the calculation method has the advantages of simplicity, rapidness and high precision and is helpful to correctly evaluate the water regulation scheme of tidal river network and scientific decision - making.

关 键 词:感潮河网 调水 数值模拟 人工神经网络 水量 浦东 

分 类 号:TV14[水利工程—水力学及河流动力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象