检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨再强[1,2] 张婷华[1] 黄海静[3] 朱凯[1] 张波[1]
机构地区:[1]南京信息工程大学江苏省农业气象重点实验室,南京210044 [2]南京信息工程大学应用气象学院,南京210044 [3]海南省气候中心,海口570203
出 处:《中国农业气象》2013年第3期342-349,共8页Chinese Journal of Agrometeorology
基 金:公益性行业(气象)科研专项(GYHY(QX)201206024;GYHY(QX)201006028);江苏省科技支撑项目(社会发展;BE2010734)
摘 要:利用北方典型日光温室室内以及相应台站气象数据,建立基于BP神经网络的室内气温预报模型,以此预报北方243个台站1990-2009年室内气温,利用预报的室内气温数据及室外降水、日照、风速等气象数据和主要气象灾害指标,构建基于实数编码的加速遗传算法(Real-code accelerating genetic algorithm,RAGA)和投影寻踪(Projection pursuit evaluate,PPE)的日光温室气象灾害风险评价模型,并对北方地区日光温室主要生产月气象灾害风险进行逐月评价。结果表明,北方日光温室室内气温预报值与实际观测值的标准误差在0.89~1.54℃,方程决定系数在0.87~0.94。北方地区日光温室1-3月的气象灾害风险等级较高,分布在天山以北、大兴安岭以北的地区和西藏地区,主要是低温和大风沙尘天气。9月气象灾害风险等级最低,分布在长城以南,黄河以北地区,主要是低温。本研究构建的北方地区日光温室气象灾害风险评价模型可为日光温室气象灾害风险区划和防御提供决策支持。The temperature prediction model indoor based on BP neural network was established,based on meteorological data inside typical solar greenhouse in North China and other meteorological stations.The temperature indoor of 243 meteorological stations was forecasted by the simulation model.Comprehensive meteorological risk assessment model for solar greenhouse was established based on real-code accelerating genetic algorithm(RAGA) and projection pursuit evaluate model(PPE),with forecast temperature data indoor and precipitation,sunlight and wind speed from other meteorological stations.The meteorological disaster risk of solar greenhouse in North China was evaluated.The results showed that the standard error was 0.89-1.54℃ between forecasted temperature and observed data,and the determination coefficient was between 0.87-0.94.The highest meteorological disasters risk level of solar greenhouse was from January to March,which was located in North of Tianshan,North of Xing Anling and Tibetan,mainly because of low temperature and frequent winds dust.The lowest risk level of meteorological disasters was in September,which was located between south of the Great Wall and north of the Yellow River,mainly because of low temperature.The meteorological risk evaluation model could provide decision-making support for distribution and defence of agro-meteorological disaster risk.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166