检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学现代设计与集成制造技术教育部重点实验室,陕西西安710072
出 处:《计算机集成制造系统》2013年第6期1279-1287,共9页Computer Integrated Manufacturing Systems
基 金:国家科技重大专项资助项目(2009ZX04014-053);国家自然科学基金资助项目(51005184)~~
摘 要:为提高叶片尺寸精度及表面质量,针对气体的可压缩性、阀的死区效应、阀的流量非线性、气缸摩擦力和测量噪声等干扰因素对叶片抛光力控制精度的影响,提出了一种基于干扰观测器的反向传播神经网络比例—积分—微分控制方法。该方法通过构造干扰观测器来预测抛光力气动控制系统中的非线性干扰,并在控制中引入等效的补偿来抑制干扰,同时利用反向传播神经网络控制算法对比例—积分—微分控制参数进行在线自适应整定。仿真分析和实验结果表明,基于干扰观测器的反向传播神经网络比例—积分—微分控制器具有控制精度高、鲁棒性强、抑制干扰能力强等优点,能够提高叶片型面尺寸精度和表面一致性、降低表面粗糙度、减小残余应力并提高抛光效率。To improve the dimensional accuracy and surface quality of blade, a Back Propagation (BP) neural network Proportional Integral Derivative (PID) control method based on disturbance observer was proposed aiming at the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference factors on the control precision of blade polishing force. This method predicted nonlinear interference in the polishing force pneumatic control system by constructing a disturbance observer, and the equivalent compensation was introduced to suppress the interference. Simultaneously, BP neural network control algorithm was used to adjust PID control parameters online adaptively. Simulation analysis and experimental results showed that BP neural network PID controller based on disturbance observer had high control precision, strong robustness, strong interference suppression ability and other advantages compared with the traditional PID controller, and it could improve the blade profile dimensional precision and surface consistence, reduce the surface roughness, decrease the residual stress and improve the polishing efficiency.
关 键 词:航空发动机 叶片 砂带抛光 抛光力 干扰观测器 反向传播神经网络 比例—积分—微分控制器
分 类 号:V261.25[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38