检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子器件》2013年第3期404-407,共4页Chinese Journal of Electron Devices
基 金:河南省教育厅自然科学研究指导计划项目(2010C520007)
摘 要:为提高变压器油溶解气体分析法的故障诊断能力,以变压器油溶解气体作为研究对象,提出了加动量批处理小波神经网络算法。选取200组油溶解气体含量作为故障识别样本,通过多输入/多输出模式小波神经网络模型的构造,对训练过程和仿真结果进行对比分析。实验结果表明,改进的小波神经网络算法故障检测符合率高达95%,较传统的检测算法提升十几个百分点,从而极大的提高了故障诊断效率,实用性较好。In order to improve the ability of fault diagnosis for analyzing the dissolved gases in transformer oil, a increased momentum batch wavelet neural network (WNN)algorithm was presented taking dissolved gases in transformer oil as the research objects. After the faults are recognized from 200 practical gas data, comparison and analysis are carried out in training process and simulation results with multiple-input/multiple-output-mode WNN model structure. Experimental results show that the improved algorithm fault detecting coincidence rate reaches as high as 95 % , up to a dozen percentage points than traditional detection algorithm, greatly improving the efficiency of fault diagnosis. The algorithm has better usability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15