检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学机电工程与控制国家级重点实验室,北京100081
出 处:《北京理工大学学报》2013年第5期465-468,共4页Transactions of Beijing Institute of Technology
基 金:国家部委基金资助项目(3020050321244)
摘 要:针对一维弹道修正引信阻力机构增阻能力有限的问题,采用概率与数理统计方法,以落入指定幅员区域弹丸数量最多为原则,对一维弹道修正弹药所需提前瞄准量、最大射程修正量进行分析.研究结果表明,采用只对部分弹丸进行修正,提前瞄准量是所需最大射程修正量的1/2,且为无修正弹丸落点纵向误差标准差2倍左右时,修正策略为最佳选择.以某155mm榴弹对象,进行蒙特卡洛打靶仿真分析,验证了该修正策略的正确性.该修正策略能以较小的提前瞄准量及所需最大射程修正量,使射程精度得到最大程度的改善,特别适用于阻力机构增阻能力有限的一维弹道修正引信.Determination of aiming advance distance and maximum correction distance is important for the correction strategy on one-dimensional trajectory correction projectile. Focusing on the problem that the resistance device of one-dimensional trajectory correction fuze has limit increased-resistance capacity, the aiming advance distance and required maximum correction distance were analyzed using probability and mathematical statistics based on the principle of the maximum number of projectiles that fall into the designated field. Results show that, when parts of the projectiles are corrected, the correction strategy is the best in condition that the aiming advance distance is half of the maximum correction range and 2 times of the standard deviation of range error of uncontrolled projectile. Taking 155mm shrapnel as an example, the reasonableness of the correction strategy above has been verified using Monte-Carlo simulation. With small aiming advance distance and the maximum range correction, the proposed correction strategy can make the greatest improvement of the range accuracy. Therefore it is perfect for one-dimensional trajectory correction fuze which has limited resistance capacity.
分 类 号:TJ430[兵器科学与技术—火炮、自动武器与弹药工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28