检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]肇庆学院电子信息与机电工程学院,广东肇庆526061
出 处:《组合机床与自动化加工技术》2013年第6期6-8,共3页Modular Machine Tool & Automatic Manufacturing Technique
基 金:国家自然科学基金资助项目(61006075);广东省教育部产学研结合项目(2011B090400253)
摘 要:应用RBF神经网络建立了高速铣削模具型腔时已加工表面粗糙度的预测模型,预测值与实测值非常接近,预测精度略高于回归模型的精度。利用该模型对高速铣削表面粗糙度进行了预报,并分析了工艺参数的影响规律,验证了模型对质量监测及工艺参数优化的可行性及实用性。结果表明,通过合理选择工艺参数,尤其在控制切削深度和切削宽度的情况下,可获得Ra0.3μm以下的已加工表面粗糙度。The predictive model of surface roughness in highspeed milling of mold cavity was developed based on the RBF artificial neural network method. The predictive results agree very well with those obtained from experiments and the predictive accuracy is slightly higher than that of regression model Using the forecast model, the surface roughness in high-speed milling was forecast and the influence of process parame- ters was analyzed, which verifies the feasibility and practicability of the model on the quality monitoring and process parameter optimization. It indicates that the surface roughness less than 0. 3~m can be achieved on condition that all machining parameters, especially milling depth and milling width are well selected.
分 类 号:TG54[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.58.30