检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学数学科学学院,成都四川611731
出 处:《数学进展》2013年第3期405-415,共11页Advances in Mathematics(China)
基 金:国家自然科学基金(No.10671134);四川省教育厅科研基金(No.12ZA098)
摘 要:本文讨论复合系统混沌性与原系统混沌性之间的联系.首先证明:在紧度量空间上,所有的复合系统都保持原系统的Li-Yorke混沌性,并且用反例说明,在一般的度量空间,该结论不成立.其次,研究复合系统的分布混沌性,得到和Li-Yorke混沌相似的结论.最后,用实例说明:对于任意的正整数n≥2,存在紧致Devaney混沌系统,其n次复合系统却不是Devaney混沌的.This paper is devoted to studying the relations between the chaoticity of compositional systems and primary systems. First, it is proved that on a compact metric space, all the compositional systems preserve Li-Yorke's chaoticity of the primary systems. And a counterexample is given to show that on a general metric space, this conclusion does not hold. Next, we study the distributional chaoticity of compositional systems and obtain some conclusions which are similar to Li-Yorke chaos. Finally, we use an example to show that for any n ≧ 2, there exists a compact system which is chaotic in the sense of Devaney, but its nth compositional system is not.
关 键 词:Li—Yorke混沌 分布混沌 DEVANEY混沌 初值敏感依赖
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171