检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄石磊[1] 陈书立[1] 刘驰[1] 袁道任[1] 娄亚飞[1] 张姗姗[1] 逯鹏[1]
出 处:《计算机应用研究》2013年第7期2199-2201,2205,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(60841004;60971110;61172152)
摘 要:针对运动目标跟踪问题,为解决跟踪过程中因遮挡、目标尺度变化等易造成跟踪失败的现象,提出一种基于视觉感知的跟踪算法。该算法以神经元响应为视觉特征,首先从自然图像中学习初级视皮层细胞感受野;然后计算背景图像和视频序列图像的神经元响应并得出差值,与动态阈值比较,识别出运动目标,通过迭代实现目标跟踪。多类别实验结果表明,该算法实现了运动目标稳定跟踪,目标跟踪准确率达93.5%且鲁棒性增强,与典型算法Camshift和SIFT相比,提高了跟踪算法的准确性和鲁棒性。For moving object tracking problems,this paper put forward an object algorithm based on visual perception,in order to solve the tracking failure phenomenon which was caused by the occlusion of tracking process and the change of object scale.This algorithm used neural response as visual features.First of all,it studied primary visual cortex cell receptive field from the natural image and calculated the neurons response of background images and video sequences,and drew the diffe-rence.Then it identified the moving object by comparing with the dynamic threshold value.Finally,it achieved object tracking by iteratively.The multi-category experiment results show that the algorithm achieves tracking of the moving object stability,and that the object tracking’s accuracy rate has achieved 93.5% and its robustness is enhanced.Compared with the typical algorithm,such as the Camshift and the SIFT,this algorithm improves the accuracy and robustness of the tracking algorithm.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30