检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许茜[1] 殷绪成[1] 李岩[1] 郝红卫[2] 曹晓钟[3]
机构地区:[1]北京科技大学计算机与通信工程学院,北京100083 [2]中国科学院自动化研究所数字内容技术与服务研究中心,北京100190 [3]中国气象局气象探测中心,北京100081
出 处:《模式识别与人工智能》2013年第6期543-551,共9页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金资助项目(No.61105018;61175020)
摘 要:现存的大气能见度测量方法主要存在硬件成本高、操作复杂度大、应用范围小等问题.文中将机器学习引入能见度测量,提出一种基于图像理解的白天能见度测量方法.首先在对测量场景图像感兴趣区域分窗处理的基础上,设计并提取基于像素对比度的图像特征及向量.然后,通过训练支持向量回归机构建图像特征与能见度值之间的关系模型.最后,根据模型计算待测图像的能见度值.实验结果表明该方法不仅具有良好的能见度测量精度,同时具有较高的灵活性,能降低已有能见度测量的局限性.High hardware cost, complex operation and narrow application are main problems of existing measuring methods of atmospheric visibility. In this paper, machine learning is introduced into the study of visibility measurement and a method of daytime visibility measurement is proposed based on image understanding. Firstly, image features and vectors based on pixel contrast are designed and extracted grounded on the segmentation of the regions of interest in measured scene images. Then, the relational model between image features and visibility is constructed by training support vector regression. Finally, visibility of images to be measured is computed according to the model. Experimental results show that the proposed method has both high visibility measuring precision and good flexibility. Moreover, it reduces the limitations of existing visibility measurement methods.
关 键 词:能见度测量 机器学习 像素对比度 支持向量回归机(SVR)
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.238