检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄茜[1] 汪玉琳[1] 王少龙[1] 汤达浚[1]
机构地区:[1]华南理工大学电子与信息学院,广州510641
出 处:《模式识别与人工智能》2013年第6期604-608,共5页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金资助项目(No.61271314)
摘 要:夜空背景易受到大气污染、月光及黄道带光等影响,导致云图变化较大.传统阈值法仅利用像素点灰度值及相应的邻域信息,难以准确分割背景变化较大且灰度不均匀的云图.文中对大量云图统计分析,发现夜空云图的两个先验特征,提出一种基于先验阈值面的云分割算法.首先根据先验特征分割出可信的背景区域,再根据背景区域进行多项式拟合得到一个随图像区域信息变化的阈值面,阈值面上的各个值介于目标和背景之间,从而可将云从背景分割出来.实验证明,相对于传统的单阈值算法,本文算法分割精确度更高,应用范围更广,尤其对受干扰的云图有更好的分割效果.Affected by the atmospheric pollution, the moonlight and the zodiac light, the night-sky cloud images vary greatly. The conventional threshold methods which only utilize pixel gray value as well as the neighborhood information are difficult to segment the image accurately because of their uneven backgrounds. In this paper, two prior features of cloud images are observed from the statistical analysis, and a prior threshold surface based cloud segmentation algorithm is presented. After reliable background regions are extracted according to the prior features, an adaptive threshold surface can be obtained by polynomial fitting on the background regions, and the values of the threshold surface are between the clouds and backgrounds. Thus the cloud can be segmented from the background. The experimental results show that the proposed algorithm is more feasible and effective compared with other existing algorithms. Moreover, it produces fine results on the cloud images of light influence.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112