Study on ballistic penetration resistance of titanium alloy TC4, Part II: Numerical analysis  被引量:7

Study on ballistic penetration resistance of titanium alloy TC4, Part II: Numerical analysis

在线阅读下载全文

作  者:Zhang Tao Chen Wei Guan Yupu Gao Deping Li Shuguang 

机构地区:[1]College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics [2]Engineering Department, CITIC Offshore Helicopter Co., Ltd.

出  处:《Chinese Journal of Aeronautics》2013年第3期606-613,共8页中国航空学报(英文版)

摘  要:Enhancing containment capability and reducing weight are always great concerns in the design of casings. Ballistic tests can help to mitigate a catastrophic event after a blade out, yet taking time and costing money. A wise way is to hunt for a validated numerical simulation technology, through which the material dynamic behavior over the strain rate range in the ballistic tests should be represented and reasonable failure strain should be defined. The simulation results show that the validation of the numerical simulation technology based on the test data can accurately estimate the absorption energy, describe the physical process and failure mode during the penetration, as well as the failure mechanism. It is found that energy dissipation of projectiles is in manner of compression stage, energy conversion stage, and interactive scrap stage. An effect indicator is proposed, where the factors of critical velocity including impact orientation and mass of projectiles and thickness of casings are considered. The critical velocity presents a linear relation with the effect indicator, which implies the critical velocity obtained by the flat casing could underestimate the capability of the real casing.Enhancing containment capability and reducing weight are always great concerns in the design of casings. Ballistic tests can help to mitigate a catastrophic event after a blade out, yet taking time and costing money. A wise way is to hunt for a validated numerical simulation technology, through which the material dynamic behavior over the strain rate range in the ballistic tests should be represented and reasonable failure strain should be defined. The simulation results show that the validation of the numerical simulation technology based on the test data can accurately estimate the absorption energy, describe the physical process and failure mode during the penetration, as well as the failure mechanism. It is found that energy dissipation of projectiles is in manner of compression stage, energy conversion stage, and interactive scrap stage. An effect indicator is proposed, where the factors of critical velocity including impact orientation and mass of projectiles and thickness of casings are considered. The critical velocity presents a linear relation with the effect indicator, which implies the critical velocity obtained by the flat casing could underestimate the capability of the real casing.

关 键 词:Absorbed energy CASING CONTAINMENT Critical velocity Failure mechanism SIMULATION 

分 类 号:TG146.23[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象