出 处:《Chinese Science Bulletin》2013年第20期2497-2506,共10页
基 金:supported by the National Basic Research Program (2012CB955302);the National Natural Science Foundation of China (41105019 and 41175042);the Specialized Research Fund for Doctoral Program of Higher Education (20110211120021);the Fundamental Research Fund for Central Uni versities (lzujbky-2011-4)
摘 要:Aerosol optical depths (AODs) from MODIS and MISR onboard the Terra satellite are assessed by comparison with measurements from four AERONET sites located in northern China for the period 2006-2009. The results show that MISR performs better than MODIS at the SACOL and Beijing sites. For the Xianghe and Xinglong sites, MODIS AOD retrievals are better than those of MISR. Overall, the relative error of the Angstrom exponent from MISR compared with AERONET is about 14%, but the MODIS error can reach 30%. Thus, it may be better to use the MISR Angstrom exponent to derive wavelength-dependent AOD values when calculating the aerosol radiative forcing in a radiative transfer model. Seasonal analysis of AOD over most of China shows two main areas with high aerosol loading: the Taklimakan Desert region and the southern part of North China and northern part of East China. The locations of these two areas of high aerosol loading do not change with season, but the AOD values have significant seasonal variation. The largest AOD value in the Taklimakan appears in spring when the Angstrom exponents are the lowest, which means the particle radii are relatively large. Over North and East China, the highest aerosol loading appears in summer. The aerosol particles are smallest in summer over both high-AOD areas.Aerosol optical depths (AODs) from MODIS and MISR onboard the Terra satellite are assessed by comparison with measurements from four AERONET sites located in northern China for the period 2006-2009. The results show that MISR performs better than MODIS at the SACOL and Beijing sites. For the Xianghe and Xinglong sites, MODIS AOD retrievals are better than those of MISR. Overall, the relative error of the Angstrom exponent from MISR compared with AERONET is about 14%, but the MODIS error can reach 30%. Thus, it may be better to use the MISR Angstrom exponent to derive wavelength-dependent AOD values when calculating the aerosol radiative forcing in a radiative transfer model. Seasonal analysis of AOD over most of China shows two main areas with high aerosol loading: the Taklimakan Desert region and the southern part of North China and northern part of East China. The locations of these two areas of high aerosol loading do not change with season, but the AOD values have significant seasonal variation. The largest AOD value in the Taklimakan appears in spring when the Angstrom exponents are the lowest, which means the particle radii are relatively large. Over North and East China, the highest aerosol loading appears in summer. The aerosol particles are smallest in summer over both high-AOD areas.
关 键 词:气溶胶光学厚度 MODIS 中国北部 时空分布 塔克拉玛干沙漠 Terra卫星 季节性变化 辐射传输模型
分 类 号:P427.2[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...