检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]后勤工程学院后勤信息与军事物流工程系 [2]69325部队
出 处:《后勤工程学院学报》2013年第4期74-79,共6页Journal of Logistical Engineering University
摘 要:确定合理的军事物流设施规模对于成功实施军事后勤保障十分重要。提出了基于RBF神经网络的军事物流设施规模预测模型的建模方法,该方法旨在确定军事物流设施规模与其影响因素之间的非线性关系;采用算例说明了基于RBF神经网络的军事物流设施规模预测的具体做法,对军事物流设施规模的确定具有指导意义。It is important for successfully implementing the military logistics support to determine the reasonable facilities scale of military logistics. This paper puts forward the modeling method for prediction of military logistics facilities scale based on RBF neural network. The purpose of this method is for determining the nonlinear relationship between military logistics facilities scale and its related influence factors. Detailed operations of ascertaining facilities scale of military logistics have been illustrated by usage of an example. This method is a guidance for determining the military logistics facilities scale.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222