检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学应用数学系,陕西西安710072
出 处:《纺织高校基础科学学报》2013年第2期176-182,共7页Basic Sciences Journal of Textile Universities
基 金:国家自然科学基金项目(11171273);国家级大学生创新创业训练计划项目资助(201210699107)
摘 要:研究了两类图的保Wiener指数的树的存在性问题.Wiener指数W(G)是指一个连通图G中所有顶点对之间的距离之和.给定一个连通图G,若存在G中一棵子树T,使得W(G)=W(T),则称T为G的一棵保Wiener指数的树.定义了带悬挂边的双多扇形图S(s,t,l,k,s,t,l)及带悬挂边的组合多扇图G(s,t,l,m,k),利用图的Wiener指数的定义和性质,证明了图S(s,t,l,k,s,t,l)及图G(s,t,l,m,k)均有保Wiener指数的子树.The existence problem on trees preserving the Wiener index of two classes of graphs is studied in this paper. The Wiener index W(G) of a connected graph G is the sum of distances among all pairs of vertices in G. If there is a connected subtree T of a given connected graph G such that W(G)=W(T), then T is called a preserving the Wiener index tree of G. In this paper, the graph S(s,t,l,k,s,t,l) is de- fined as a multi-fan graph with pendent edges and the graph G(s, t, l, re,k) is defined as a group of multi- fan graphs with pendent edges. By using the definition and the properties of Wiener index of a graph, it is proved that there exist subtrees preserving Wiener index in those two classes of graphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222