检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《运筹与管理》2013年第3期53-60,共8页Operations Research and Management Science
基 金:国家自然科学基金资助项目(70602017);国家社会科学基金资助项目(06CJY019);陕西省自然科学基础研究计划项目(2010JM9003);中央高校基本科研业务费专项基金资金项目
摘 要:一阶自回归(AR(1))序列模拟需求过程是传统文献采用的经典模型,然而上述文献关于需求过程参数(如需求自回归系数)对牛鞭效应的影响分析缺乏实践意义,为了更符合企业的实际决策过程,本文建立了需求依赖于价格、而以AR(1)序列模拟价格过程的需求函数模型,分析了最小均方差、移动平均和指数平滑预测下的牛鞭效应,确定了零售商的预测技术选择条件。研究表明:(1)产品市场规模不影响零售商预测技术的选择;(2)当产品价格敏感系数较小或价格自回归系数较小时,零售商应选择最小均方差预测技术;(3)当产品价格敏感系数和价格自回归系数均较大时,零售商应选择移动平均预测技术。In the previous research, ers to describe the demand process. a first - order autoregressive( AR( 1 ) However, it is difficult to explain ) process was adopted by most research- the managerial insights of the demand process characteristics, such as the demand correlation coefficient on the bullwhip effect. Our research considers a demand model where the demand depends on its price and the price follows an AR( 1)process, we derive the analytical expressions of the bullwhip effect with minimum mean-squared error( MMSE), moving average(MA) and exponential smoothing( ES) techniques and deduce the conditions under which the retailer should choose the best forecasting technique. Results show that: first, the market demand scale does not influence the retailer' s choice. Second, when the product price sensitivity coefficient is small, Or when the price correlation coefficient is small, the retailer should choose MMSE technique. Third, for products with a large product price sensitivity coefficient and a large price correlation coefficient, the retailer should choose MA technioue.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.73.0