检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东师范大学信息科学与工程学院,济南250014 [2]山东师范大学山东省分布式计算机软件新技术重点实验室,济南250358
出 处:《计算机工程》2013年第7期261-264,283,共5页Computer Engineering
基 金:国家自然科学基金资助项目(60970004);山东省自然科学基金资助项目(ZZ2008G02);山东省高等学校科技计划基金资助项目(J11LG32)
摘 要:针对原始人工蜂群算法在人群疏散仿真中存在的早熟停滞问题,提出一种基于种群划分思想的新型蜂群算法。以种群划分为基础,利用多种群协同进化机制扩展求解的多样性,防止算法陷入局部最优。以ACIS/HOOPS为平台搭建3D仿真系统,对改进算法进行人群疏散仿真及对比分析,结果表明,与原始算法相比,该算法在精度和收敛速度上明显提升。与粒子群优化算法相比,该算法能够实现人群疏散的均衡分布,提高应急疏散的效率。According to the premature stagnation of original Artificial Bee Colony(ABC) algorithm in evacuation motion simulation, an improved algorithm based on the thought of population dividing is proposed. Multi-species cooperation mechanism is used to extend solution's diversity in order to prevent sinking into local optimum solutions. 3D simulation system is built based on ACIS/HOOPS to make evacuation simulation and comparison analysis on the proposed algorithm. The algorithm can improve accuracy and convergence speed compared with original algorithm, implement even distribution of population evacuation and improves the efficiency compared with Particle Swarm Optimization(PSO) algorithm according to the result of experiments.
关 键 词:计算机仿真 疏散 人工蜂群算法 多模式 种群划分
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38