基于模糊神经网络的TC4-DT钛合金高温变形本构关系模型(英文)  被引量:2

Modeling the High Temperature Deformation Constitutive Relationship of TC4-DT Alloy Based on Fuzzy-neural Network

在线阅读下载全文

作  者:唐波[1] 唐斌[1] 李金山[1] 张丰收[2] 杨冠军[1] 

机构地区:[1]西北工业大学凝固技术国家重点实验室,陕西西安710072 [2]西部超导材料科技股份有限公司,陕西西安710018

出  处:《稀有金属材料与工程》2013年第7期1347-1351,共5页Rare Metal Materials and Engineering

基  金:National Natural Science Foundation of China (50824001)

摘  要:通过分析研究变形温度、应变速率及变形程度参数对TC4-DT钛合金高温变形行为的影响,建立了一种基于自适应模糊神经网络的TC4-DT钛合金高温变形本构关系预测模型。高温变形热模拟压缩试验的变形温度为750~1150℃,应变率为O.001~10s^(-1),试样高度压缩率为50%。本研究中建立的网络模型集成了模糊推理系统误差反向传播(BP)神经网络的学习算法。结果表明,该模型的预测值与实验结果比较吻合,最大相对误差小于6%。本研究证明模糊神经网络是一种优化TC4-DT钛合金本构关系模型和优化变形工艺参数的有效、实用方法。By analyzing the high temperature TC4-DT titanium alloys' deformation temperature, strain rate and deformation degree with the parameters of the experimental data flow stress, an adaptive fuzzy-neural network model has been established to predict flow stress data to model the high temperature deformation constitutive relationship of TC4-DT titanium alloy. The experimental results were obtained at deformation temperature of 750-1150 ℃, strain rates of 0.001- 10 s1, and height reduction of 50%. The network integrates the fuzzy inference system with a back-propagation (BP) learning algorithm of neural network. Results show that the predicated values are in satisfactory agreement with the experimental results and the maximum relative error is less than 6%. It proves that the fuzzy-neural network is a very effective and practical method to achieve more optimized TC4 - DT titanium alloy constitutive relation model and optimize deformation process parameters.

关 键 词:TC4-DT钛合金 模糊神经网络 本构关系 

分 类 号:TG146.23[一般工业技术—材料科学与工程] TP183[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象