检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学信息资源研究中心
出 处:《情报学报》2013年第7期763-768,共6页Journal of the China Society for Scientific and Technical Information
基 金:中国博士后科学基金资助项目(2012M521479);国家自然科学基金(71073119)
摘 要:本文着重研究了社会网络环境下的用户关系社区发现及在此基础上的用户兴趣建模问题。在阐述复杂网络中社区发现机理和研究进展的基础上,本文针对社会网络环境下用户兴趣多元化及关系社区小规模化和交叉性等特点,从模块度改进的角度进行关系社区发现算法的改进。进而从社区和个体两个层面进行了用户兴趣模型构建,提出将两者加权融合实现用户整体建模的思路。对比试验表明,基于关系社区的用户建模在在查全率方面具有优越性。The study of users' relationship community discovering and on that basis the users' preference modeling is of important significance. Based on the elaboration of mechanism and research advance of community discovery in complex network, this article improved the discovering method of relationship community from the perspective of modified modularity according to the diversification of users' preference, the small-scale and overlapping of users' relationship community. And then, the users' preference model was constructed from two levels: community and individual: A new proposal was put forward that the weight fusion of community model and individual model was made to achieve the users' whole model. The comparative experiment demonstrated that this method is more superior to traditional methods from the perspective of recall ratio.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.156.0