检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘文杰[1] 伍之昂[2] 曹杰[2] 潘金贵[1]
机构地区:[1]南京大学软件新技术国家重点实验室,江苏南京210046 [2]南京财经大学江苏省电子商务重点实验室,江苏南京210003
出 处:《通信学报》2013年第7期159-166,173,共9页Journal on Communications
基 金:国家自然科学基金资助项目(71072172;61103229);江苏省省属高校自然科学研究重大基金资助项目(12KJA520001);国家科技支撑计划基金资助项目(2013BAH16F01);国家国际科技合作基金资助项目(2011DFA12910);江苏省自然科学基金资助项目(BK2010373;BK2012863)~~
摘 要:针对图像数据噪声大和高维稀疏的特点,提出了一种基于噪声过滤和Info-Kmeans聚类的图像索引构建方法。首先,利用余弦兴趣模式过滤噪声。其次,提出了一种新的Info-Kmeans聚类算法,该算法不仅避免KL-divergence计算过程中的零值困境问题,还能融合以成对约束出现的先验知识。最后,在LFW和Oxford_5K 2个图像数据集上的实验表明:噪声过滤能显著提高聚类性能;Info-Kmeans比已有聚类工具具有更优越的性能。Constructing high-quality content-based image indexing is fairly difficult due to the large amount of noise in the data set and the high-dimension and the sparseness of the image data. To meet this challenge, a novel noise-filtering and clustering was proposed using Info-Kmeans based image indexing construction method. Firstly, a noise-filtering method using the cosine interesting patterns was presented. Secondly, a novel Info-Kmeans algorithm was proposed which could avoid the zero-feature dilemma caused by the use of KL-divergence and exploit the prior knowledge in the form of pair constraints. The experimental results on the two image data sets, LFW and Oxford 5K, well demonstrate that: noise filter can improve the clustering performance remarkably and the novel Info-Kmeans algorithm yields better results than the existing clustering tool.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147