检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机械设计与制造》2013年第1期227-229,共3页Machinery Design & Manufacture
摘 要:为了克服传统BP神经网络的学习速率慢、容易陷入局部极小点等缺点,采用遗传算法对BP神经网络的初值空间进行遗传优化。用遗传算法来优化BP神经网络的权重和阈值,得到最佳的初始权值矩阵,并按误差前向反馈算法沿负梯度方向搜索进行网络学习的方法对磨削力进行预测。根据磨削力实验数据对网络进行训练,仿真结果表明该模型可以精确的描述砂轮速度、工件速度、磨削深度对磨削力的影响,并可以用有限的实验数据得出整个工作范围内磨削力的预测值。In view of that BP neural network has the disadvantage of slowly leaning rate and being easily stacked into the minimal value locally,the Genetic Algorithm was utilized to optimize the initial-value space of BP neural network.The optimal initial weight-value matrix was obtained by using Genetic algorithm to optimize the weight-value and threshold of BP neural network,and the method of network learning was analyzed by using the error-forward-feedback algorithm with negative gradient searching.The network training was carried out by experiment of grinding force data,and the simulation results show that the model could accurately describe the effect of wheel's speed,working speed and grinding depth on grinding force.The prediction of grinding force in the working range can be obtained by using limited experiment data.
分 类 号:TH16[机械工程—机械制造及自动化] TG580.13[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15