检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家气象信息中心系统工程室,北京100081
出 处:《计算机工程与应用》2013年第14期186-192,共7页Computer Engineering and Applications
摘 要:隐马尔可夫模型(Hidden Markov Model,HMM)是一种有效的时序信号建模方法,已广泛用于语音识别、文字识别等领域,近年来也被用于人的行为识别。人的行为序列是一种特殊的时序信号,每类行为往往包含若干帧关键姿势。利用行为序列的这个特点,提出了AdaBoost-EHMM(AdaBoost-Exemplar-based HMM)算法,并将该算法应用于行为识别中。利用AdaBoost的特征选择方法将行为序列中的典型样本逐个选择出来作为HMM观测概率模型的均值,之后融合多级分类器进行行为识别。实验结果证明AdaBoost-EHMM算法在保证算法收敛的同时提高了识别率。Hidden Markov Model (HMM) is an effective method of modeling time sequence, and has been widely used in speech recognition, character recognition, and in action recognition recently. Human action sequence is one kind of special time sequences. Each action sequence always includes some key poses. So, AdaBoost-EHMM(AdaBoost-Exemplar-based HMM) algorithm is presented and used in action recognition. AdaBoost method is used to select exemplars from action sequences as the mean values of observation probability model. Fusion of multiple classifiers is adopted to classify action sequence. Effectiveness of the proposed approach is demonstrated with experiments.
关 键 词:AdaBoost-EHMM 行为识别 特征提取
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249