检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学杂志》2013年第4期603-608,共6页Journal of Mathematics
基 金:Supported by Beijing Natural Science Foundation(1102002);he National Natural Science Foundation of China(11271036)
摘 要:本文研究了空间X中具有一定性质的子集可度量化的问题.利用一般拓扑学证明一个空间可度量的方法,得到如下结论:若正则空间具有与其有界子集有关的正则Gδ对角线,那么该子集的闭包是可度量化的;若正则空间具有与其有界强零集A有关的Gδ对角线,那么该子集A是X的紧可度量的子空间,推广了文献[1,2]的结果.In this note, we study a problem that when the subset A of a space X is metrizable. By the usual methods of proving a space to be metrizable in general topology, we get the following conclusions: we show that if a set A is a bounded subset of a regular space X and X has a regular Gδ-diagonal related to a set A, then A is metrizable. And we get that if F is a bounded strong zero-set of a regular space X and X has a regular Gδ-diagonal related to the set F, then F is a compact metrizable subspace of X, which ueneralize the result in [1. 2].
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13