Intrinsic determinants of optic nerve regeneration  

Intrinsic determinants of optic nerve regeneration

在线阅读下载全文

作  者:ZHU Rui-lin CHO Kin-Sang GU0 Chen-ying CHEW Justin CHEN Dong-feng YANG Liu 

机构地区:[1]Department of Ophthalmology, Peking University First Hospital Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100034, China [2]Schepens Eye Research Institute, Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States

出  处:《Chinese Medical Journal》2013年第13期2543-2547,共5页中华医学杂志(英文版)

基  金:This study was supported by a grant from the National Natural Science Foundation of China (No. 81170837).

摘  要:Objective To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Data sources Relevant articles published in English or Chinese from 1970 to present were selected from PubMed. Searches were made using the terms "intrinsic determinants, axon regeneration, RGC, optic nerve regeneration, and central nervous system axon regeneration." Study selection Articles studying the mechanisms controlling RGC and central nervous system (CNS) axon regeneration were reviewed. Articles focusing on the intrinsic determinants of axon regeneration were selected. Results Like other CNS neurons of mammals, RGCs undergo a developmental loss in their ability to grow axons as they mature, which is a critical contributing factor to the failure of nerve regeneration and repair after injury. This growth failure can be attributed, at least in part, by the induction of molecular programs preventing cellular overgrowth and termination of axonal growth upon maturation. Key intracellular signals and transcription factors, including B cell lymphoma/leukemia 2, cyclic adenine monophosphate, mammalian target of rapamycin, and Kr^Jppel-like transcription factors, have been identified to play central roles in this process. Conclusions Intense effort and substantial progress have been made to identify the various intrinsic growth pathways that regulate RGC axon regeneration. More work is needed to elucidate the mechanisms of and the interrelationship between the actions of these factors and to successfully achieve regeneration and repair of the severed RGC axons.Objective To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Data sources Relevant articles published in English or Chinese from 1970 to present were selected from PubMed. Searches were made using the terms "intrinsic determinants, axon regeneration, RGC, optic nerve regeneration, and central nervous system axon regeneration." Study selection Articles studying the mechanisms controlling RGC and central nervous system (CNS) axon regeneration were reviewed. Articles focusing on the intrinsic determinants of axon regeneration were selected. Results Like other CNS neurons of mammals, RGCs undergo a developmental loss in their ability to grow axons as they mature, which is a critical contributing factor to the failure of nerve regeneration and repair after injury. This growth failure can be attributed, at least in part, by the induction of molecular programs preventing cellular overgrowth and termination of axonal growth upon maturation. Key intracellular signals and transcription factors, including B cell lymphoma/leukemia 2, cyclic adenine monophosphate, mammalian target of rapamycin, and Kr^Jppel-like transcription factors, have been identified to play central roles in this process. Conclusions Intense effort and substantial progress have been made to identify the various intrinsic growth pathways that regulate RGC axon regeneration. More work is needed to elucidate the mechanisms of and the interrelationship between the actions of these factors and to successfully achieve regeneration and repair of the severed RGC axons.

关 键 词:nerve regeneration retinal ganglion cells  intrinsic determinants CAMP ROTOR PTEN  SOCS3 

分 类 号:R741[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象